Системные        23.07.2023   

Аппаратура дистанционного зондирования предназначена. Данные дистанционного зондирования. Акустические и около-акустические применения

О том, что такое дистанционное зондирование Земли (ДЗЗ) и какое оно имеет практическое применение, мы поговорили с доктором технических наук, заместителем директора Института космических исследований РАН Евгением Лупяном .

Время спутников-шпионов прошло?

— Евгений Аркадьевич, сколько сейчас в космосе аппаратов, которые ведут наблюдения за поверхностью Земли? И сколько из них российских?

— Всего на орбитах летает около 400 спутников, занятых именно дистанционным зондированием. Планируется, что к 2020 году их будет 1200-1300. К сожалению, российских аппаратов среди них очень мало: всего 9 штук. Согласитесь, это не очень хорошая ситуация. Было время, когда наша страна занимала одну из лидирующих позиций в этой области, но потом сдала её. Сейчас мы пытаемся её восстановить.

Дистанционное зондирование Земли — очень перспективное направление, ведь возможности систем наблюдения за планетой из космоса постоянно растут. Несколько лет назад в этой сфере произошла революция. Американская компания PlanetLab запустила в космос целый рой малых аппаратов: более 200 спутников! Они производят съёмку с разрешением порядка 3-4 метров, при этом за сутки фактически покрывают всю поверхность планеты. Для сравнения: чтобы выполнить такую съёмку нашими аппаратами серии «Канопус» (в настоящее время их на орбите 6 штук), понадобится несколько месяцев.

Канопус-В на «МАКСе»-2013. Фото: Commons.wikimedia.org / Vitaly V. Kuzmin

Другое важное событие, повлиявшее на развитие дистанционного зондирования Земли, произошло несколько лет назад. Тогда американские и европейские космические агентства открыли свободный доступ к значительным объёмам своих данных, которые имеют разрешение хуже 10 метров. Это существенно расширило возможности по созданию новых методов и технологий работы с данными. В первую очередь — для проведения постоянного мониторинга различных объектов и явлений. До этого решение подобных задач, как правило, было нерентабельным из-за больших затрат на приобретение данных.

— Похоже, что на поверхности Земли уже трудно что-то скрыть. Неужели время спутников-шпионов безвозвратно прошло?

— Не совсем так. Задачи у таких спутников, безусловно, остались. Технически они также совершенствуются. Но появились совершенно новые области, в которых стало возможно использовать данные дистанционного зондирования.

80% прогноза погоды — из космоса

— На какой высоте летают спутники дистанционного зондирования?

— Так называемые низкоорбитальные обычно располагаются на орбитах с высотами от 400 до 800 км. Один оборот вокруг Земли у них занимает около 90 минут.

Есть геостационарные спутники, которые летают на высоте 36 тыс. км. Точнее, они не летают, а всё время висят в одной точке. Их разрешение не очень велико: у лучших аппаратов оно может составлять 500 метров. Но зато они позволяют проводить наблюдения каждые 10 минут, а в некоторых случаях — каждые 2 минуты. Это очень важно, когда мы следим за быстро развивающимися процессами. Например, за извержениями вулканов и движением выброшенных ими пепловых облаков.

— Спутники запускают, чтобы следить за вулканами? Это так важно?

— Людям, живущим в Москве, пепловые выбросы вулканов, наверное, кажутся чем-то несущественным. Но это ровно до того момента, пока им не понадобится покупать билет на самолёт, чтобы лететь куда-то в другой район Земли. Напомню, что в 2010 году из-за извержения вулкана в Исландии воздушное пространство Европы было на несколько дней закрыто для авиаперелётов.

У дистанционного зондирования Земли огромное количество прикладных применений. Это мониторинг и предсказание природных бедствий: не только извержений вулканов, но и пожаров, наводнений, ураганов и др. Это прогнозы погоды: 80% информации, которая используется для этих целей, получена из космоса.

Это, например, сельское хозяйство. С помощью спутников оценивают состояние посевов, характеристики почвы (влажность, эрозию), анализируют, каким образом нужно вести обработку посевов, чтобы достичь максимальных урожаев на конкретном поле (так называемые задачи точного земледелия). Спутники помогают понять, как развиваются во времени те или иные сельхозкультуры в разных регионах Земли. К примеру, пшеница. Глядя на серию спутниковых снимков и сравнивая их с наблюдениями предыдущих лет, мы, в частности, можем получить заблаговременную оценку урожая в конкретном году.

А возьмём лесное хозяйство. Его уже и представить нельзя без спутникового мониторинга. Наверное, не стоит напоминать, что значит для нашей страны лес. Современные спутниковые методы позволяют составлять карты лесов, следить за пожарами, оперативно обнаруживать их и оптимизировать работы по тушению. Система, которая решает подобные задачи на всей территории страны, была создана ещё 2005 году. И с той поры постоянно работает.

И от сердечного приступа спасёт

— Мне доводилось слышать, что со спутников даже косяки рыб в океане отслеживают. Это так?

— Напрямую не отслеживают. Там используется такая схема. Рыба, как известно, питается планктоном. Со спутника хорошо видно, где сколько планктона, какой у него цвет и прочие характеристики. И по этим данным можно предположить, придёт ли в этот район рыба. Соответственно, можно послать уведомление рыболовным судам.

Технологии дистанционного зондирования Земли уже дошли до того, что позволяют измерять энергопотери жилых домов. На детальном уровне! А это открывает новые возможности энергетикам и коммунальщикам. Используя полученные сведения, они могут менять структуру утепления зданий.

Как раз недавно наши коллеги из Научно-исследовательского центра экологической безопасности РАН получили очень интересные факты по Питеру. Там были сделаны замеры выделений тепла по разным районам. Потом взяли различные сценарии климатических изменений и получили прогноз повышения смертности от сердечно-сосудистых заболеваний в тех или иных городских районах. Вот вам пример того, как на основе дистанционного зондирования Земли можно получать информацию для планирования медицинского обслуживания. Вовремя принятые меры помогут спасти жизни конкретным людям.

— Их переселят из районов, где слишком тепло, в более прохладные?

— Есть менее радикальные меры. Можно посадить там деревья, покрасить крыши домов специальной отражающей краской. Или просто в белый цвет.

— Мы сильно отстаём от США и Китая по количеству спутников ДЗЗ. Вы сами сказали, что их у нас только 9. Но в чём-то мы имеем приоритет в этой области?

— Имеем. Как я уже сказал, многие иностранные компании сейчас открыли доступ к своим данным, сделали информацию бесплатной. А в России очень хорошая школа программирования и обработки данных. Мы сделали алгоритмы, которые получают из этих находящихся в открытом доступе данных определённые характеристики, анализируют их и позволяют использовать для решения различных задач.

В стране очень быстро развиваются новые технологии, благодаря которым можно эффективно работать со сверхбольшими потоками данных от различных систем ДЗЗ. Есть успехи в создании центров, обеспечивающих возможности распределённой работы с архивами этих данных. Например, такой центр коллективного пользования создан в нашем Институте космических исследований РАН. Около 80 научных организаций, находящихся в разных городах нашей (да и не только нашей) страны, пользуются его возможностями.

По своей функциональности наш центр входит если не в тройку, то уж точно в пятёрку подобных мировых центров. Конечно, в чисто аппаратном плане нам трудно конкурировать с компаниями Google и Amazon. В первую очередь — из-за несопоставимости финансовых ресурсов, которые они выделяют своим центрам на развитие. Но это заставляет нас искать новые подходы и решения. И мы их находим.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Основные понятия дистанционного зондирования Земли. Схема дистанционного зондирования

дистанционный зондирование земля геодезический

Дистанционное зондирование Земли (ДЗЗ)- получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние.

Физическая основа дистанционного зондирования - функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта и его биогеофизическими характеристиками и пространственным положением.

С помощью дистанционного зондирования изучают физические и химические свойства объектов.

В ДЗЗ выделяются два взаимосвязанных направления

Естественно-научное (дистанционные исследования)

Инженерно-техническое (дистанционные методы)

Remote sensing

Remote sensing techniques

Предмет ДЗЗ, как науки - пространственно-временные свойства и отношения природных и социально-экономических объектов, проявляющиеся прямо или косвенно в собственном или отраженном излучении, дистанционно регистрируемом из космоса или с воздуха в виде двумерного изображения - снимка.

Методы ДЗ основаны на использовании сенсоров, которые размещаются на космических аппаратах и регистрируют электромагнитное излучение в форматах, существенно более приспособленных для цифровой обработки, и в существенно более широком диапазоне электромагнитного спектра.

В ДЗ используют инфракрасный диапазон отраженного излучения, тепловой инфракрасный и радиодиапазон электромагнитного спектра.

Процесс сбора данных дистанционного зондирования и их использование в географических информационных системах (ГИС).

2. Виды космических съемок

Космосъемка занимает одно из ведущих мест среди различных методов дистанционного зондирования. Она осуществляется с помощью:

* искусственные спутники Земли (ИЗС),

* межпланетные автоматические станции,

* долговременные орбитальные станции,

* пилотируемые космические корабли.

Табл. Основные космодромы, используемые для запусков спутников-съемщиков.

Космические системы (комплексы) мониторинга окружающий среды включают в себя (и выполняют):

1. Спутниковые системы на орбите (центр управления полетами и съемкой),

2. Прием информации наземными пунктами приема, спутниками-ретрансляторами,

3. Хранение и распространение материалов (центры первичной обработки, архивы снимков). Разработана информационная поисковая система, обеспечивающая накопление и систематизацию материалов, получаемых с искусственных спутников Земли.

Орбиты космических летательных аппаратов.

Орбиты носителей делятся на 3 типа:

* экваториальные,

* полярные (полюсные),

* наклонные.

Орбиты подразделяют на:

* круговые (точнее, близкие к круговым). Космоснимки, полученные с космического носителя, который двигался по круговой орбите, имеют примерно одинаковый масштаб.

* эллиптические.

Орбиты различают также по положению относительно Земли или Солнца:

* геосинхронные (относительно Земли)

* гелиосинхронные (относительно Солнца).

Геосинхронные - космический летательный аппарат движется с угловой скоростью, равной скорости вращения Земли. Это создает эффект “зависания” космического носителя в одной точке, что удобно для постоянных съемок одного и того же участка земной поверхности.

Гелиосинхронные (или солнечно-синхронные) - космический аппарат проходит над определенными участками земной поверхности в одно и то же местное время, что используется при производстве многократных съемок при одинаковых условиях освещения. Гелиосинхронные орбиты -- орбиты, при съемке с которых солнечная освещенность земной поверхности (высота Солнца) остается практически неизменной достаточно продолжительное время (почти в течение Сезона). Это достигается следующим путем. Поскольку плоскость любой орбиты под влиянием несферичности Земли немного разворачивается (прецессирует), то оказывается возможным, подбирая определенное соотношение наклонения и высоты орбиты, добиться, чтобы величина прецессии была равной суточному повороту Земли вокруг Солнца, т. е. около 1° в сутки. Среди околоземных орбит удается создать лишь несколько солнечно-синхронных, наклонение которых всегда обратное. Например, при высоте орбиты 1000 км наклонение должно быть 99°.

Виды съемок.

Космическую съемку ведут разными методами (рис. «Классификация космических снимков по спектральным диапазонам и технологии съемки»).

По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:

* одиночное фотографирование,

* маршрутную,

* прицельную,

* глобальную съемку.

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.

Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.

Глобальную съемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

Аэрокосмический снимок

Аэрокосмический снимок - это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Космический снимок по своим геометрическим свойствам принципиально не отличается от аэрофотоснимка, но имеет особенности, связанные с:

* фотографированием с больших высот,

* и большой скоростью движения.

Аэрокосмическая съемка выполняются в видимом и невидимом диапазонах электромагнитных волн, где:

1. фотографический - видимый диапазон;

2. нефотографический - видимый и невидимый диапазоны, где:

· видимый диапазон - спектрометрический основан на различии спектральных коэффициентов отражения геологических объектов. Результаты записываются на магнитную ленту и отмечаются на карте. Возможно использование кино- и фотокамер;

· невидимый диапазон: радарная (радиотепловая РТ и радиолокационная РЛ), ультрафиолетовая УФ, инфракрасный ИК, оптико-электронный (сканерный), лазерный (лидарный).

Видимая и ближняя инфракрасная область. Самый полный объем информации получается в наиболее освоенной видимой и ближней инфракрасной областях. Аэро- и космосъемки в видимом и ближнем инфракрасном диапазонах длин волн осуществляются с помощью следующих систем:

* Телевизионных,

* фотографических,

* оптико-электронных сканирующих,

3. Фотографические системы

В настоящее время существует широкий класс систем ДЗЗ

формирующих изображение исследуемой подстилающей поверхности- В рамках данного класса аппаратуры можно выделить несколько подклассов различающихся по спектральному диапазону используемого электромагнитного излучения и по типу приёмника регистрируемого излучения также по методу активный или пассивный(зондирования фотографические и фототелевизионные системы: сканирующие системы видимого и ИК-диапазона телевизионные оптико-механические и оптико-электронные сканирующие радиометры и многоспектральные сканеры телевизионные оптические системы: радиолокационные системы бокового обзора (РЛСБО) сканирующие СВЧ-радиометры.

Фотографические снимки поверхности Земли получают с пилотируемых кораблей и орбитальных станций или с автоматических спутников- Отличительной чертой космических снимков (КС) является высокая степень

обзорности охват одним снимком больших площадей поверхности- В зависимости от типа применяемой аппаратуры и фотопленок фотографирование может производиться во всем видимом диапазоне электромагнитного спектра в отдельных его зонах а также в ближнем ИК (инфракрасном) диапазоне

Масштабы съемки зависят от двух важнейших параметров высоты съемки и фокусного расстояния объектива- Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности В настоящее время используется фотоаппаратура с высоким разрешением позволяющая получать (КС) с перекрытием 60% и более- Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм). Известные недостатки фотографического метода связаны с необходимостью возвращения пленки на Землю и ограниченным ее запасом на борту. Однако фотографическая съемка в настоящее время самый информативный вид съемки из космического пространства- Оптимальный размер отпечатка 18х18см, который, как показывает опыт согласуется с физиологией человеческого зрения позволяя видеть все изображение одновременно Для удобства пользования из отдельных КС имеющих перекрытия монтируются фотосхемы(фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1мм и точнее. Для монтажа фотосхем используются только плановые КС

Для приведения разномасштабного обычно перспективного КС к плановому используется специальный процесс называемый трансформированием Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

4. Телевизионные системы

Телевизионные и сканерные снимки. Телевизионная и сканерная съемка позволяет систематически получать изображения и передавать их на Землю на приемные станции. Используются кадровые и сканирующие системы. В первом случае, это миниатюрная телевизионная камера в которой оптическое изображение, построенное объективом на экране переводится в форму электросигналов и по радиоканалам передается на землю--Во втором случае качающееся зеркало сканера на борту улавливает отраженный от Земли световой поток, поступающий на фотоумножитель. Преобразованные сигналы сканера по радиоканалам передаются на Землю. На приемных станциях записываются в виде изображений. Колебания зеркала формирует строки изображения, движение носителя позволяет накапливать строки и формировать снимок. Телевизионные и сканерные снимки могут передаваться в реальном масштабе времени, т.е. во время прохождения спутника над объектом съемки. Оперативность, это отличительная черта данного метода. Однако качество снимков несколько уступает фотографическим снимкам. Разрешение сканерных снимков определяется элементом сканирования и в настоящий момент составляет 80-30 м. Снимки этого типа отличаются строчно-сетчатой структурой заметной только при увеличении на снимках высокого разрешения. Сканерные снимки большого охвата имеют существенные геометрические искажения. Сканерные снимки поступаю в цифровой форме, что облегчает компьютерную обработку.

Телевизионная и сканерная съемка выполняется с метеоспутников и ресурсных спутниво LandSat, «Метеор-Природа», Ресрурс 0. В многозональном варианте.

Околоземные орбиты высотой 600-1400 км., масштабы от 1:10 000 000 до 1:1 000 000 и 1:100 000 при разрешении от 1-2 км до 30 м. LandSat, например, имеет 4 спектральных диапазона съемки в видимом и ближнем инфракрасном диапазоне с разрешением 30 м. «Метеор-Природа» сканеры позволяют получать малое (1.5 км), среднее (230 м) и высокое разрешение до 80-40 м, Ресурс -0 сканеры среднего (170 м) и высокого (40м).

Многоэлементные ПЗС снимки. Дальнейшее повышение разрешения при оперативности съемки связано с внедрением электронных камер. В них используются многоэлементные линейные и матричные приемники излучения, состоящие из приборов с зарядовой связью (светочувствительные элементы-детекторы). Линейный ряд детекторов реализует строку снимка, накопление строк за счет движения носителя. (как у сканера)., но нет качающихся зеркал и более высокое разрешение. Ресурсные снимки высокого разрешения (40м) Ресурс и Французский спутник SPOT, до 10 м. Такая технология на K`mcR`s,6- Фототелевизионные снимки- У телевизионных снимков малое разрешение. У фототелевизионных, фотографирование с помощью фотокамеры (в результате хорошее качество), а передача по телевизионным каналам- Таким образом, объединяются преимущества фотографии с его высоким разрешением и оперативная доставка изображений.

5. Сканерные системы

В настоящее время для съемок из космоса наиболее часто используются многоспектральные (мультиспектральные). оптико-механические системы - сканеры, установленные на ИСЗ различного назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин «сканирование» обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический.

Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму. Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы. Хорошо зарекомендовал себя сканер нового поколения, названный «тематическим картографом», которым были оснащены американские ИСЗ

Landsat 5 и Landsat 7. Сканер типа “тематический картограф” работает в семи диапазонах с разрешением 30м в видимом диапазоне спектра и 120м в ИК- диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения (число пикселов на снимках достигает более 36 млн. на каждом из каналов). Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации сканирующие радиометры, и излучения сканирующие - спектрометры.

6. Лазерные сканирующие системы

Еще буквально десять лет назад было очень сложно даже представить, что создадут прибор, который сможет производить до полумиллиона сложных измерений в одну секунду. Сегодня же, такие приборы не только созданы, но и очень широко используются.

Лазерные сканирующие системы - без них уже трудно обойтись во многих отраслях, таких как горная отрасль, промышленность, топографическая съемка, архитектура, археология, гражданское строительство, мониторинг, моделирование городов и прочее.

Основополагающими техническими параметрами наземных лазерных сканеров считаются скорость, точность и дальность измерений. Выбор модели во многом зависит от видов работ и объектов, на которых сканеры будут использоваться. К примеру, на больших карьерах лучше применять устройства с повышенной точностью и дальностью. Для архитектурных работ вполне хватит 100-150 метров дальности, но потребуется прибор с точностью до 1 см. Если говорить о скорости работы, то в этом случае, чем выше, тем, конечно, лучше.

В последнее время технология наземного лазерного сканирования все шире используется для решения задач инженерной геодезии в различных областях строительства и промышленности. Растущая популярность лазерного сканирования обусловлена целым рядом преимуществ, которые дает новая технология по сравнению с другими методами измерений. Среди преимуществ хочется выделить главные: повышение скорости работ и уменьшение трудозатрат. Появление новых более производительных моделей сканеров, совершенствование возможностей программного обеспечения, позволяет надеяться на дальнейшее расширение сфер применения наземного лазерного сканирования.

Первым результатом сканирования является облако точек, которое и несет максимум информации об исследуемом объекте, будь то здание, инженерное сооружение, памятник архитектуры и т.п. По облаку точек в дальнейшем, возможно, решать различные задачи:

· получение трехмерной модели объекта;

· получение чертежей, в том числе, чертежей сечений;

· выявление дефектов и различных конструкций посредством сравнения с проектной моделью;

· определение и оценка значений деформации посредствам сравнения с ранее произведенными измерениями;

· получение топографических планов методом виртуальной съемки.

При топосъемке сложных промышленных объектов традиционными методами, исполнители часто сталкиваются с тем, что во время полевых работ бывают пропущены отдельные измерения. Обилие контуров, большое количество отдельных объектов приводят к неизбежным ошибкам. Материалы, получаемые при лазерном сканировании, несут более полную информации об объекте съемки. Перед началом процесса сканирования лазерный сканер производит панорамную фотосъемку, которая значительно повышает информативности получаемым результатов.

Технология наземного лазерного сканирования, используемая для создания трехмерных моделей объектов, топографических планов сложных загруженных территорий, значительно повышает производительность труда и уменьшает затраты времени. Разработка и внедрение новых технологий производства геодезических работ, всегда велись с целью сокращения сроков полевых работ. Можно с уверенностью сказать, что лазерное сканирование полностью отвечает этому принципу.

Технология наземного лазерного сканирования находится в постоянном развитии. Это касается и совершенствования конструкции лазерных сканеров, и развития функций программного обеспечения, используемого для управления приборами и обработки полученных результатов.

7. Закон Стефана-Больцмана

Нагретые тела излучают энергию в виде электромагнитных волн различной длины. Когда мы говорим, что тело «раскалено докрасна», это значит, что его температура достаточно высока, чтобы тепловое излучение происходило в видимой, световой части спектра. На атомарном уровне излучение становится следствием испускания фотонов возбужденными атомами. Закон, описывающий зависимость энергии теплового излучения от температуры, был получен на основе анализа экспериментальных данных австрийским физиком Йозефом Стефаном и теоретически обоснован также австрийцем Людвигом Больцманом.

Чтобы понять, как действует этот закон, представьте себе атом, излучающий свет в недрах Солнца. Свет тут же поглощается другим атомом, излучается им повторно -- и таким образом передается по цепочке от атома к атому, благодаря чему вся система находится в состоянии энергетического равновесия. В равновесном состоянии свет строго определенной частоты поглощается одним атомом в одном месте одновременно с испусканием света той же частоты другим атомом в другом месте. В результате интенсивность света каждой длины волны спектра остается неизменной.

Температура внутри Солнца падает по мере удаления от его центра. Поэтому, по мере движения по направлению к поверхности, спектр светового излучения оказывается соответствующим более высоким температурам, чем температура окружающий среды. В результате, при повторном излучении, согласно закону Стефана--Больцмана, оно будет происходить на более низких энергиях и частотах, но при этом, в силу закона сохранения энергии, будет излучаться большее число фотонов. Таким образом, к моменту достижения им поверхности спектральное распределение будет соответствовать температуре поверхности Солнца (около 5 800 К), а не температуре в центре Солнца (около 15 000 000 К). Энергия, поступившая к поверхности Солнца (или к поверхности любого горячего объекта), покидает его в виде излучения. Закон Стефана--Больцмана как раз и говорит нам, какова излученная энергия. Этот закон записывается так:

где Т -- температура (в кельвинах), а у -- постоянная Больцмана. Из формулы видно, что при повышении температуры светимость тела не просто возрастает -- она возрастает в значительно большей степени. Увеличьте температуру вдвое, и светимость возрастет в 16 раз!

Итак, согласно этому закону любое тело, имеющее температуру выше абсолютного нуля, излучает энергию. Так почему, спрашивается, все тела давно не остыли до абсолютного нуля? Почему, скажем, лично ваше тело, постоянно излучая тепловую энергию в инфракрасном диапазоне, характерном для температуры человеческого тела (чуть больше 300 К), не остывает?

Ответ на этот вопрос, на самом деле, состоит из двух частей. Во-первых, с пищей вы получаете энергию извне, которая в процессе метаболического усвоения пищевых калорий организмом преобразуется в тепловую энергию, восполняющую потери вашим телом энергии в силу закона Стефана--Больцмана. Умершее теплокровное весьма быстро остывает до температуры окружающей среды, поскольку энергетическая подпитка его тела прекращается.

Еще важнее, однако, тот факт, что закон распространяется на все без исключения тела с температурой выше абсолютного нуля. Поэтому, отдавая свою тепловую энергию окружающей среде, не забывайте, что и тела, которым вы отдаете энергию, -- например, мебель, стены, воздух, -- в свою очередь излучают тепловую энергию, и она передается вам. Если окружающая среда холоднее вашего тела (как чаще всего бывает), ее тепловое излучение компенсирует лишь часть тепловых потерь вашего организма, и он восполняет дефицит за счет внутренних ресурсов. Если же температура окружающей среды близка к температуре вашего тела или выше нее, вам не удастся избавиться от избытка энергии, выделяющейся в вашем организме в процессе метаболизма посредством излучения. И тут включается второй механизм. Вы начинаете потеть, и вместе с капельками пота через кожу покидают ваше тело излишки теплоты.

В вышеприведенной формулировке закон Стефана--Больцмана распространяется только на абсолютно черное тело, поглощающее всё попадающее на его поверхность излучение. Реальные физические тела поглощают лишь часть лучевой энергии, а оставшаяся часть ими отражается, однако закономерность, согласно которой удельная мощность излучения с их поверхности пропорциональна Т 4, как правило, сохраняется и в этом случае, однако постоянную Больцмана в этом случае приходится заменять на другой коэффициент, который будет отражать свойства реального физического тела. Такие константы обычно определяются экспериментальным путем.

8. История развития методов ДЗЗ

Рисованные снимки - Фотоснимки - наземная фототеодолитная съемка-Аэрофотоснимки - аэрометоды.-Понятие ДЗ появилось в XIX веке.-Впоследствии, ДЗ начали использовать в военной области для сбора информации о противнике и принятия стратегических решений.-После Второй мировой войны ДЗ стали использовать для наблюдения за окружающей средой и оценки развития территорий, а также в гражданской картографии.

В 60-х годах XX века, с появлением космических ракет и спутников, дистанционное зондирование вышло в космос.-1960 год - запуск разведывательных спутников в рамках программ CORONA, ARGON и LANYARD. -Программа Mercury - получены снимки Земли. Проект Gemini (1965-1966 гг.) - систематический сбор данных дистанционного зондирования. Программа Apollo (1968-1975 гг.) - дистанционное зондирование земной поверхности и высадка человека на Луну-Запуск космической станции Skylab (1973-1974 гг.), - исследования земных ресурсов. Полеты космических кораблей многоразового использования(1981г.). Получение многозональных снимков с разрешением 100 метров в видимом и близком инфракрасном диапазоне с использованием девяти спектральных каналов.

9. Элементы ориентирования космических снимков

Положение снимка в момент фотографирования определяют три элемента внутреннегоориентирования-фокусное расстояние фотокамеры f, координаты x0, y0 главной точки о (рис. 1) и шестьэлементов внешнего ориентирования - координаты центра проекции S - XS, YS, ZS, продольный ипоперечный углы наклона снимка б и щ и угол поворота ч.

Между координатами точки объекта и её изображения на снимке существует связь:

где X, Y, Z и XS, YS, ZS - координаты точек М и S в системе OXYZ; X", Y", Z" - координаты точки m всистеме SXYZ, параллельной OXYZ, вычисляемые по плоским координатам х и у:

a1 = cos бcosч - sinбsinщsinч

a2 = - cosбsinч - sinбsin щcosч

a3 = - sinбcos щ

b2 = cosщcosч (3)

c1 = sinбcosч + cosбsinщsinч,

c2 = - sinбcosч + cosбsinщcosч,

Направляющие косинусы.

Формулы связи между координатами точки М объекта (рис. 2) и координатами её изображений m1 и m2на стереопаре P1 - P2 имеют вид:

BX, BY и BZ - проекции базиса В на оси координат. Если элементы внешнего ориентирования стереопары известны, то координаты точки объекта можно определить по формуле (4) (метод прямой засечки). По одиночному снимку положение точки объекта можно найти в частном случае, когда объект плоский, например равнинная местность (Z = const). Координаты х и у точек снимков измеряются намонокомпараторе или Стереокомпараторе. Элементы внутреннего ориентирования известны из результатов калибровки фотоаппарата, а элементы внешнего ориентирования можно определить при фотографировании объекта или в процессе фототриангуляции (См. Фототриангуляция). Если элементы внешнего ориентирования снимков неизвестны, то координаты точки объекта находят с использованием опорных точек (метод обратной засечки). Опорная точка - опознанная на снимке контурная точка объекта, координаты которой получены в результате геодезических измерений или из фототриангуляции. Применяя обратную засечку, сначала определяют элементы взаимного ориентирования снимков P1 - P2 (рис. 3) - б"1, ч"1, a"2, щ"2,ч"2 в системе S1X"Y"Z"; ось Х которой совпадает с базисом, а ось Z лежит в главной базисной плоскости S1O1S2снимка P1. Затем вычисляют координаты точек модели в той же системе. Наконец, используя опорные точки, переходят. от координат точек модели к координатам точек объекта.

Элементы взаимного ориентирования позволяют установить снимки в то положение относительно друг друга, которое они занимали при фотографировании объекта. В этом случае каждая пара соответственных лучей, например S1m1 и S2m2, пересекается и образует точку (m) модели. Совокупность лучей, принадлежащих снимку, называется связкой, а центр проекции - S1 или S2 - вершиной связки. Масштаб модели остаётся неизвестным, т.к. расстояние S1S2 между вершинами связок выбирается произвольно. Соответственные точки стереопары m1 и m2 находятся в одной плоскости, проходящей через базис S1S2.Поэтому

Полагая, что приближённые значения элементов взаимного ориентирования известны, можно представить уравнение (6) в линейном виде:

a дб1" + b дб2" + с дщ2" + d дч1" + e дч2" + l = V, (7)

где дб1",... e дм2" - поправки к приближённым значениям неизвестных, а,..., е - частные производные от функции (6) по переменным б1",... ч2", l - значение функции (6), вычисленное по приближённым значения мне известных. Для определения элементов взаимного ориентирования измеряют координаты не менее пяти точек стереопары, а затем составляют уравнения (7) и решают их способом последовательных приближений. Координаты точек модели вычисляют по формулам (4), выбрав произвольно длину базиса В и полагая

Xs1 = Ys1 = Zs1 = 0, BX = В, BY = BZ = 0.

При этом пространственные координаты точек m1 и m2находят по формулам (2), а направляющие косинусы - по формулам (3): для снимка P1 по элементам б1",

а для снимка P2 по элементам б2", щ2", ч2".

По координатам X" Y" Z" точки модели определяют координаты точки объекта:

где t - знаменатель масштаба модели. Направляющие косинусы получают по формулам (3),подставляя вместо углов б, щ и ч продольный угол наклона модели о, поперечный угол наклона модели з иугол поворота модели и.

Для определения семи элементов внешнего ориентирования модели - Размещено на http://www.allbest.ru/

О, з, и, t - составляют уравнения (8) для трёх или более опорных точек и решают их. Координаты опорных точек находят геодезическими способами или методом фототриангуляции. Совокупность точек объекта, координаты которых известны, образует цифровую модель объекта, служащую для составления карты и решения различных инженерных задач, например для изыскания оптимальной трассы дороги. Кроме аналитических методов обработки снимков, применяются аналоговые, основанные на использовании фотограмметрических приборов - Фототрансформатора, Стереографа, Стереопроектора и др.

Щелевые и панорамные фотоснимки, а также снимки, полученные с применением радиолокационных, телевизионных, инфракрасных-тепловых и других съёмочных систем, существенно расширяют возможности Ф., особенно при космических исследованиях. Но они не имеют единого центра проекции, и элементы внешнего ориентирования их непрерывно изменяются в процессе построения изображения, что осложняет использование таких снимков для измерительных целей.

10. Свойства аэрокосмических снимков

Аэрокосмические снимки -- основной результат аэрокосмических съемок, для выполнения которых используют разнообразные авиационные и космические носители. Это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения. Аэрокосмические съемки делят на пассивные, которые предусматривают регистрацию отраженного солнечного или собственного излучения Земли; активные, при которых выполняют регистрацию отраженного искусственного излучения. Диапазон масштабов аэрокосмических снимков: от 1:1000 до 1:100 000 000

Наиболее распространенные масштабы: аэрофотоснимков 1:10 000--1:50 000, космических -- 1:200 000--1:10 000 000.

Аэрокосмические снимки: аналоговые (обычно фотографические),цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов -- пикселов (от англ. picture element -- рixel); яркость каждого пиксела характеризуется одним числом. Свойства аэрокосмических снимков: Изобразительные, Радиометрические (фотометрические) ,Геометрические.

Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов.

Радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов.

Геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

11. Смещение точек на космическом снимке

Достоинства космосъемки. Летящий спутник не испытывает вибраций и резких колебаний, поэтому космические снимки удается получать с более высокой разрешающей способностью и высоким качеством изображения, чем аэроснимки. Снимки могут быть переведены в цифровую форму для последующей компьютерной обработки.

Недостатки космосъемки: информация не поддается автоматизированной обработке без предварительных преобразований. При космофотосъемке происходит смещение точек (под влиянием кривизны Земли), их величина на краях снимка достигает 1,5 мм. В пределах снимка нарушено постоянство масштаба, различие которого на краях и в центре снимка может составлять выше 3%.

Недостатком фотосъемки является его неоперативность, т.к. контейнер с пленкой спускается на Землю не чаще, чем один раз в несколько недель. Поэтому фотографические космические снимки редко используются для оперативных целей, а представляют информацию долговременного использования.

Как известно, снимок - это центральная проекция местности, а топографическая карта - ортогональная. Горизонтальный снимок плоской местности соответствует ортогональной проекции, т. е. проекции ограниченного участка топографической карты. В связи с этим, если преобразовать наклонный снимок в горизонтальный снимок заданного масштаба, то положение контуров на снимке будет соответствовать положению контуров на топографической карте заданного масштаба. Рельеф местности также вызывает смещение точек на снимке относительно их положения на ортогональной проекции соответствующего масштаба.

12. Этапы дистанционного зондирования и анализа данных

Стереосъемка.

Многозональная съемка. Гиперспектральная съемка.

Многовременная съемка.

Многоуровневая съемка.

Многополяризационная съемка.

Комбинированный метод.

Междисциплинарный анализ.

Техника получения материалов дистанционного зондирования

Аэрокосмическую съемку ведут в окнах прозрачности атмосферы, используя излучение в разных спектральных диапазонах - световом (видимом, ближнем и среднем инфракрасном), тепловом инфракрасном и радиодиапазоне.

Фотосъемка

Высокая степень обзорности, охват одним снимком больших площадей поверхности.

Фотографирование во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

Масштабы съемки зависят от

Высоты съемки

Фокусного расстояния объектива.

В зависимости от наклона оптической оси получение плановых и перспективных снимков земной поверхности.

КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм).

Сканерная съемка

Наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного, назначения.

Изображения, состоящие из множества отдельных, последовательно получаемых элементов.

«сканирование» - развертка изображения при помощи сканирующего элемента, поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселами.

Сканерная съемка

Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны.

Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные.

У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

Радиолокационная съемка

Получение изображений земной поверхности и объектов, расположенных на ней, независимо от погодных условий, в дневное и ночное время благодаря принципу активной радиолокации.

Технология была разработана в 1930-х гг.

Радиолокационная съемка Земли ведется в нескольких участках диапазона длин волн (1 см - 1 м) или частот (40 ГГц- 300 МГц).

Характер изображения на радиолокационном снимке зависит от соотношения между длиной волны и размерами неровностей местности: поверхность может быть в разной степени шероховатой или гладкой, что проявляется в интенсивности обратного сигнала и, соответственно, яркости соответствующего участка на снимке. Тепловые съемки

Основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением.

Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм): ближний (0,74-1,35), средний (1,35-3,50) , дальний (3,50-1000).

Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному. ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей.

Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0.

Космические снимки

Три основных способа передачи данных со спутника на Землю.

Прямая передача данных на наземную станцию.

Полученные данные сохраняются на спутнике, а затем передаются с некоторой задержкой по времени на Землю.

Использование системы геостационарных спутников связи TDRSS (Tracking and Data Relay Satellite System).

13. Комплекты поставки ERDAS IMAGINE

ERDAS IMAGINE - один из самых популярных в мире программных продуктов в области работы с геопространственными данными. ERDAS IMAGINE сочетает в мощном и удобном программном обеспечении возможности обработки и анализа разнообразной растровой и векторной геопространственной информации, позволяя создавать такие продукты, как прошедшие улучшающие преобразования геопривязанные снимки, ортомозаики, карты классификации растительности, ролики полёта в «виртуальном мире», векторные карты, полученные в результате обработки аэро- и космических изображений.

IMAGINE Essentials - продукт начального уровня, содержит базовые инструменты для визуализации, коррекции, составления карт. Позволяет использовать пакетную обработку.

IMAGINE Advantage включает в себя все возможности IMAGINE Essentials. Помимо этого, предоставляет расширенные возможности спектральной обработки, анализа изменений, ортокоррекции, мозаики, анализа изображений. Позволяет проводить параллельную пакетную обработку.

IMAGINE Professional включает в себя все возможности IMAGINE Advantage. Кроме того, предлагает набор передовых инструментов для обработки спектральных, гиперспектральных и радиолокационных данных, а также пространственного моделирования. Включает ERDAS ER Mapper.

Дополнительные модули, такие как SAR Interferometry, IMAGINE Objective и другие, расширяют функциональность программного комплекса, делая его универсальными инструментом работы с геопространственной информацией.

14. Цифровые данные. Схематичное представление преобразования исходных данных в значения пикселей

Цифровые данные в процессе сканирования сенсором генерируется электрический сигнал, интенсивность которого изменяется в зависимости от яркости участка земной поверхности. При многозональной съемке различным спектральным диапазонам соответствуют отдельные независимые сигналы. Каждый такой сигнал непрерывно изменяется во времени, и для последующего анализа его необходимо преобразовать в набор числовых значений. Для преобразования непрерывного аналогового сигнала в цифровую форму его разделяют на части, соответствующие равным интервалам дискретизации (Рисунок 11). Сигнал в пределах каждого интервала описывается только сред ним значением его интенсивности, поэтому вся информация о вариациях сигнала на этом интервале теряется. Таким образом, величина интервала дискретизации является одним из параметров, от которого напрямую зависит разрешающая способность сенсора. Следует также отметить, что для цифровых данных обычно выбирают не абсолютную, а относительную шкалу яркостей, поэтому эти данные не отражают истинных радиометрических значений, полученных для данной сцены.

15. Проектирование техногенной системы

При проектировании любой техногенной системы, включая информационные, в первую очередь определяют цели, достижение которых необходимо обеспечить, и первоочередные задачи, решаемые при эксплуатации системы.

Определим основную цель проекта ГИС «Каспий» следующим образом: создать многоцелевую, многопользовательскую систему оперативного информационного обслуживания центральных и местных органов власти, государственных органов экологического контроля, агентства и его подразделений по чрезвычайным ситуациям, компаний нефтегазовой промышленности, а также других официальных или частных организаций и лиц. заинтересованных в решении территориальных проблем региона.

Первоочередные задачи можно сформулировать, исходя из краткой характеристики территории. На наш взгляд, эти задачи следующие:

картирование природных структур и объектов с анализом и описанием геологических, ландшафтных и других территориальных закономерностей;

тематическое картирование инфраструктуры нефтегазовой промышленности с достаточно точной привязкой к топооснове и ландшафтным, геомофологическим, экологическим картам побережья;

оперативный контроль и прогноз динамики береговой линии с анализом возникающих при этом территориальных проблем (разрушение дамб, затопление нефтяных скважин, вынос нефтяных разливов в море, замазучивание прибрежных районов и др.);

слежение за ледовой обстановкой, особенно в районах шельфа, где добыча нефти осуществляется с морских платформ.

Исходя из списка первоочередных задач, сформулируем содержательные требования к системе:

на первом этапе реализации системы использовать доступные космические средства NOAA/AVHRR и TERRA/MODIS и соответственно осуществлять мониторинг процессов крупного и среднего масштабов - тепловые поля, ледовые покрытия, водные поверхности. Предусмотреть возможность развития системы с использованием активных (RADARSAT-1, 2 ERS-1) и пассивных (Landsat-7. SPOT-4,1RS) съемок высокого разрешения;

в системе должны быть предусмотрены прием, архивация и обработка данных наземных наблюдений, полученных как на сети агрометеостанций, так и на подспутниковых полигонах и тестовых участках. Состав аппаратуры определяется в зависимости от решаемой задачи;

*дополнительным источником информации могут служить также экспедиционные наземные и самолетные наблюдения. В зависимости от оснащенности этих экспедиций информация может поступать в оперативном режиме или после камеральной обработки.

Системные соглашения по доступу к информации, срокам ее хранения, ценообразованию первичных и обработанных данных и др. должны вырабатываться совместно с заинтересованными министерствами, областными и районными акиматами и другими государственными потребителями данных мониторинга. В проекте системы должна быть предусмотрена возможность включения соответствующие управляющих и сервисных программ.

Эти базовые требования определяют рамки, выходить за которые проектировщик не имеет права. Однако отметим, что чем уже эти рамки, чем жестче ограничения, тем легче проектировать и программировать. Поэтому грамотный проектировщик стремится к тесному взаимодействию с заказчиком при выработке технического задания.

Целесообразность создания такой системы доказана многочисленными примерами эффективного использования ГИС при решении самых различных территориальных задач. Особенность данной работы состоит в проектировании и реализации ГИС мониторинга и моделирования территориальных процессов на рассматриваемой территории с учетом существующей, на данный момент, инфраструктуры информационных технологий.

На первом этапе сформулируем тот минимум обязательных условий, который предъявляется к информационной (вернее, к любой техногенной) системе для обеспечения ее “жизнестойкости”. Система может эффективно функционировать и эволюционировать, если:

ее функциональное назначение отвечает потребностям среды (как правило, тоже системы), в которую она погружена;

ее структура не противоречит архитектуре систем, с которыми она взаимодействует;

ее структура внутренне не противоречива и обладает высокой степенью гибкости и модифицируемости;

процедуры, вшитые в нее, эффективным способом объединяются в технологические цепочки, соответствующие общей технологической схеме функционирования системы;

ее сокращение или расширение не приводит к разрушению структуры, и каждый этап "жизненного цикла” системы, каждая ее версия используется для выполнения

соответствующих функций.

Перечисленные условия эффективности техногенных систем можно

проиллюстрировать многими примерами. Осооенно наглядно демонстрируют эти условия, так называемые, системы мониторинга. Среди них ярким примером служит мощная мониторинговая система - всемирная метеорологическая служба.

16. Методы дешифрирования

При дешифрировании радиолокационного аэрокосмоизображения, независимо от выбранною метода, необходимо:

обнаружить цель или объект местности на изображении;

опознать цель или объект местности;

проанализировать обнаруженную цель или объект местности и определить их количественные и качественные характеристики;

оформить результаты дешифрирования в виде графического или текстового документа.

В зависимости от условий и места выполнения дешифрирование радиолокационных снимков может быть подразделено на полевое, аэровизуальное, камеральное и комбинированное.

Нулевое дешифрирование

Мри полевом дешифрировании дешифровщик непосредственно на местности ориентируется по характерным и легко опознаваемым объектам местности и, сравнивая контуры объектов с их радиолокационными изображениями, наносит результаты опознавания условными знаками на снимок или топографическую карту.

При полевом дешифрировании попутно, непосредственными измерениями, определяются числовые и качественные характеристики объектов (характеристики растительности, водоемов, сооружений при них, характеристики населенных пунктов и т. д.). При этом на снимок или карту могут быть нанесены объекты, не изобразившиеся на снимке вследствие своих малых размеров или потому, что они не существовали в момент съемки. При полевом дешифрировании специально или попутно создаются эталоны (ключи), с помощью которых в дальнейшем в камеральных условиях облегчается опознавание объектов однотипной местности.

Недостатками полевого дешифрирования снимков являются его трyдоемкость по времени и затратам и сложность его организации.

Аэровизуальное дешифрирование аэрокосмоснимков

В последнее время в практике аэрофотографических работ все большее применение пол\ чает аэровизуальный метод дешифрирования аэрофотоснимков. Этот метод с успехом можег быть применен при дешифрировании радиолокационных изображений местности.

Сущность аэровизуального метода заключается в опознавании изображений объекта с самолета или вертолета. Наблюдение может вестись через оптические и инфракрасные приборы. Аэровизуальное дешифрирование радиолокационных изображений позволяет увеличить производительность и снизить стоимость работ полевого дешифрирования.

Полученные в результате дешифрирования данного снимка данные позволят определить местоположение источников загрязнений и оценить их интенсивность (рис. 12).

Камеральное дешифрирование аэрокосмоснимков

При камеральном дешифрировании снимков опознавание объектов и их интерпретация производится без сличения изображений с натурой, путем изучения изображений объектов по их дешифровочным признакам. Камеральное дешифрирование снимков широко применяется при составлении контурных радиолокационных карт, обновлении топографических карт, геологических исследованиях, при исправлении и дополнении картографических материалов в труднодоступных районах.

Однако камеральное дешифрирование обладает существенным недостатком - невозможно полностью получить все необходимые сведения о местности. Кроме того, результаты камерального дешифрирования снимков соответствуют не времени выполнения дешифрирования, а моменту съемки. Поэтому представляется весьма целесообразным сочетание камерального и полевого или аэровизуального дешифрирования снимков, т. е. их комбинирование.

При комбинированном дешифрировании снимков основная работа по обнаружению и опознаванию объектов выполняется в камеральных условиях, а в поле или в полете выполняются и опознаются те объекты или их характеристики которые невозможно опознать камерально.

Камеральное дешифрирование делится на два метода:

непосредственное или полуинструментальное дешифрирование;

инструментальное дешифрирование.

Непосредственный метод дешифрирования

При непосредственном методе дешифрирования исполнитель зрительно, без приборов или с помощью увеличительных приборов, рассматривает снимок и, основываясь на дешифровочных признаках изображения и своем опыте, опознает и интерпретирует объекты.

При непосредственном методе дешифрировании снимков применяемые приборы являются вспомогательными, улучшающими условия наблюдения. Некоторые приборы позволяют дешифровщику определять количественные характеристики дешифрируемых объектов. Но основную роль в обнаружении, распознавании и интерпретации играет человек.

К вспомогательным приборам и инструментам относятся наборы луп с различным увеличением, измерительные шкалы, стереоскопы, параллактические линейки, параллаксометры, специальные приборы для дешифрирования, проекционные экраны, телевизионные и электронно-оптические замкнутые системы, улучшающие условия дешифрирования снимков.

17. Искажение космических снимков

Анализ подсистемы реального космического снимка приводит к выводу о том, что источники искажений (шумов) при космической съемке могут быть представлены тремя подсистемами искажающих факторов:

погрешности работы съемочной и регистрирующей аппаратуры;

«шумы» среды распространения электромагнитного излучения и особенности поверхности объекта съемки;

изменение ориентации носителя во время съемки.

Такая систематизация позволяет выработать стратегию изучения и коррекции искажений космических снимков, поскольку она приводит к следующим выводам:

характер искажений, вызываемых источниками второго и третьего типа с небольшими модификациями, связанными в основном с используемым спектральным диапазоном, будет одинаков для любых съемочных систем. По этой причине такие искажения можно изучать, абстрагируясь в определенной степени от конкретного типа съемочной аппаратуры;

характер искажений, вызываемых источниками первой группы, устанавливается путем всестороннего исследования аппаратуры, при этом необходима разработка методов ее калибровки и контроля во время работы на орбите, что должно позволить производить коррекцию большинства искажений, вызванных несовершенством функционирования аппаратуры.

Искажающие факторы могут быть подразделены также по способу учета искажений, вызываемых тем пли иным источником шумов:

факторы, влияние которых можно сравнительно просто и с достаточной точностью учесть путем введения поправок в координаты точек на снимке, причем эти поправки рассчитываются по конечным математическим формулам;

факторы, учет которых требует применения современных методов математической статистики и теории обработки измерений.

В зарубежных публикациях о космической съемке указанные подсистемы искажающих факторов называют соответственно предсказуемыми и измеряемыми, т. е. требующими производства измерений и математико-статистической обработки их результатов.

...

Подобные документы

    Мониторинг объектов населенных пунктов: сущность и задачи, информационное обеспечение. Современные системы дистанционного зондирования: авиационные, космические, наземные. Применение аэро- и космических съемок при мониторинге объектов населенного пункта.

    дипломная работа , добавлен 15.02.2017

    Преимущества методов дистанционного зондирования Земли из космоса. Виды съемок, методы обработки снимков. Виды эрозионных процессов и их проявление на космических изображениях. Мониторинг процессов фильтрации и подтопления от промышленных отстойников.

    курсовая работа , добавлен 07.05.2015

    Проведение исследований гидрографических объектов. Требования к аппаратуре дистанционного зондирования Земли при проведении геоэкологических исследований нефтегазового комплекса. Характеристика съемочной аппаратуры, установленной на космических аппаратах.

    курсовая работа , добавлен 15.03.2016

    Особенности дешифрования данных дистанционного зондирования для целей структурно-геоморфологического анализа. Генетические типы зон нефтегазонакопления и их дешифрирование. Схема структурно-геоморфологического дешифрирования Иловлинского месторождения.

    реферат , добавлен 24.04.2012

    Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.

    презентация , добавлен 19.02.2011

    Прикладные задачи, решаемые с помощью методов и средств дистанционного зондирования. Расчет параметров съемки в целях землеустройства и земельного кадастра. Основные требования к точности результатов дешифрирования при создании базовых карт земель.

    контрольная работа , добавлен 21.08.2015

    Причины использования метода дешифрирования снимков. Влияние ледников на природу планеты. Оценка снежно-ледовых ресурсов Земли из космоса. Значение космических снимков. Этапы программы "космической помощи". Необходимость применения рекреационных карт.

    реферат , добавлен 17.11.2011

    Методы изучения океанов и морей из космоса. Необходимость дистанционного зондирования: спутники и датчики. Характеристики океана, исследуемые из космоса: температура и соленость; морские течения; рельеф дна; биопродуктивность. Архивы спутниковых данных.

    курсовая работа , добавлен 06.06.2014

    Аэросъемка и космическая съемка - получение изображений земной поверхности с летательных аппаратов. Схема получения первичной информации. Влияние атмосферы на электромагнитное излучение при съемках. Оптические свойства объектов земной поверхности.

    презентация , добавлен 19.02.2011

    Дешифровочные признаки основных геологических и геоморфологических элементов. Прямые дешифровочные признаки. Контрастно-аналоговый метод по сопоставлению с эталонными снимками и показателями и сопоставлению и сравнению объектов в пределах одного снимка.

Дистанционное зондирование Земли (ДЗЗ) - получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние. Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта и его биогеофизическими характеристиками и пространственным положением.

В современном облике дистанционного зондирования выделяются два взаимосвязанных направления - естественно-научное (дистанционные исследования) и инженерно-техническое (дистанционные методы), что нашло отражение в широко распространенных англоязычных терминах remote sensing и remote sensing techniques. Понимание сущности дистанционного зондирования неоднозначно. Аэрокосмическая школа Московского университета им. М.В.Ломоносова в качестве предмета дистанционного зондирования как научной дисциплины рассматривает пространственно-временные свойства и отношения природных и социально-экономических объектов, проявляющиеся прямо или косвенно в собственном или отраженном излучении, дистанционно регистрируемом из космоса или с воздуха в виде двумерного изображения - снимка. Эта существенная часть дистанционного зондирования названа аэрокосмическим зондированием (АКЗ) , что подчеркивает его преемственность с традиционными аэрометодами. Метод аэрокосмического зондирования основан на использовании снимков, которые, как свидетельствует практика, представляют наибольшие возможности для комплексного изучения земной поверхности.

Во всех странах действенным стимулом развития аэрокосмического зондирования служат запросы военных ведомств. С внедрением космических методов и современных цифровых технологий аэрокосмическое зондирование приобретает все более важное экономическое значение и становится обязательным элементом высшего образования в природоведческих вузах, превращается в мощное средство изучения Земли от локальных исследований отдельных компонентов до глобального изучения планеты в целом. Поэтому при изложении различных аспектов аэрокосмического зондирования целесообразно рассматривать его как метод исследований, результативно применяемый во всех науках о Земле, и, прежде всего в географии.

История и современное состояние аэрокосмического зондирования

Дистанционные методы применяются в исследованиях Земли очень давно. Вначале использовались рисованные снимки , которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науки о Земле мощным средством исследований — аэрометодами.

История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах - зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней.

В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования.

  • Космические снимки, оперативно размещаемые в Интернете, становятся наиболее востребованной видеоинформацией о местности как для специалистов-профессионалов, так и для широких слоев населения.
  • Разрешение и метрические свойства космических снимков открытого доступа быстро повышаются. Получают распространение орбитальные снимки сверхвысокого разрешения - метрового и даже дециметрового, которые успешно конкурируют с аэроснимками.
  • Аналоговые фотографические снимки и традиционные технологии их обработки утрачивают свое прежнее монопольное значение. Основным обрабатывающим прибором стал компьютер, оснащенный специализированным программным обеспечением и периферией.
  • Развитие всепогодной радиолокации превращает ее в прогрессивный метод получения метрически точной пространственной геоинформации, который начинает эффективно комплексироваться с оптическими технологиями аэрокосмического зондирования.
  • Быстро формируется рынок разнообразной продукции аэрокосмического зондирования Земли. Неуклонно увеличивается число коммерческих космических аппаратов, функционирующих на орбитах, особенно зарубежных. Наибольшее применение находят снимки, получаемые ресурсными спутниковыми системами Landsat (США), SPOT (Франция), IRS (Индия), картографическими спутниками ALOS (Япония), Cartosat (Индия), спутниками сверхвысокого разрешения Ikonos, QiuckBird, GeoEye (США), в том числе радиолокационными TerraSAR-X и TanDEM-X (Германия), выполняющими тандемную интерферометрическую съемку. Успешно эксплуатируется система спутников космического мониторинга RapidEye (Германия).

Принципиальная технологическая схема дистанционных исследований Земли

Рис. 1

На рис.1 в обобщенном виде представлена принципиальная схема выполнения аэрокосмических исследований. Она включает основные технологические этапы: получение снимка объекта исследования и дальнейшую работу со снимками - их дешифрирование и фотограмметрическую обработку, а также конечную цель исследований - составленную по снимкам карту, геоинформационную систему, разработанный прогноз. Поскольку получить необходимые характеристики изучаемого объекта только по снимкам без каких-либо натурных определений, без обращения к «земной правде» в большинстве случаев невозможно, необходимо их эталонирование. Важным элементом исследований по снимкам является также оценка достоверности и точности полученных результатов. Для этого приходится привлекать другую информацию и обрабатывать ее иными методами, что требует дополнительных затрат.

Снимок - основное понятие аэрокосмического зондирования

Аэрокосмические снимки — основной результат аэрокосмических съемок, для выполнения которых используют разнообразные авиационные и космические носители (рис. 2). Аэрокосмические съемки делят на пассивные , которые предусматривают регистрацию отраженного солнечного или собственного излучения Земли, и активные , при которых выполняют регистрацию отраженного искусственного излучения.

Рис. 2

Аэрокосмический снимок — это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Диапазон масштабов современных аэрокосмических снимков огромен: он может меняться от 1:1000 до 1:100 000 000, т. е. в сто тысяч раз. При этом наиболее распространенные масштабы аэрофотоснимков лежат в пределах 1:10 000—1:50 000, а космических — 1:200 000—1:10 000 000. Все аэрокосмические снимки принято делить на аналоговые (обычно фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов — пикселов (от англ. picture element рixel ); яркость каждого пиксела характеризуется одним числом.

Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические (фотометрические) и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

Важными показателями снимка служат охват и пространственное разрешение . Обычно для исследований требуются снимки большого охвата и высокого разрешения. Однако удовлетворить эти противоречивые требования в одном снимке не удается. Обычно чем больше охват получаемых снимков, тем ниже их разрешение. Поэтому приходится идти на компромиссные решения либо выполнять одновременно съемку несколькими системами с различными параметрами.

Технологии получения и основные типы аэрокосмических снимков

Аэрокосмическую съемку ведут в окнах прозрачности атмосферы (рис.3), используя излучение в разных спектральных диапазонах - световом (видимом, ближнем и среднем инфракрасном), тепловом инфракрасном и радиодиапазоне.

Рис. 3

В каждом из них применяют разные технологии получения изображения и в зависимости от этого выделяются несколько типов снимков (рис.4).

Рис.4

Снимки в световом диапазоне делятся на фотографические и сканерные, которые в свою очередь подразделяются на полученные оптико-механическим сканированием (ОМ-сканерные) и оптико-электронным с использованием линейных приемников излучения на основе приборов с зарядовой связью (ПЗС-сканерные). На таких снимках отображаются оптические характеристики объектов - их яркость, спектральная яркость. Применяя многозональный принцип съемки, получают в этом диапазоне многозональные снимки , а при большом числе съемочных зон - гиперспектральные , использование которых основано на спектральной отражательной способности объектов съемки, их спектральной яркости .

Проводя съемку с использованием приемников теплового излучения - тепловую съемку , - получают тепловые инфракрасные снимки. Съемку в радиодиапазоне ведут, применяя как пассивные, так и активные методы, и в зависимости от этого снимки делятся на микроволновые радиометрические, получаемые при регистрации собственного излучения исследуемых объектов, и радиолокационные снимки, получаемые при регистрации отраженного радиоизлучения, посылаемого с носителя - радиолокационной съемке .

Методы получения информации по снимкам: дешифрирование и фотограмметрические измерения

Необходимая для исследований информация (предметно-содержательная и геометрическая) извлекается из снимков двумя основными методами, это дешифрирование и фотограмметрические измерения

Дешифрирование, которое должно дать ответ на основной вопрос - что изображено на снимке, позволяет получать предметную, тематическую (в основном качественную) информацию об изучаемом объекте или процессе, его связях с окружающими объектами. В визуальном дешифрировании обычно выделяют чтение снимков и их интерпретацию (толкование). Умение читать снимки базируется на знании дешифровочных признаков объектов и изобразительных свойств снимков. Глубина же интерпретационного дешифрирования существенно зависит от уровня подготовки исполнителя. Чем лучше знает дешифровщик предмет своего исследования, тем полнее и достовернее информация, извлекаемая из снимка.

Фотограмметрическая обработка (измерения) призвана дать ответ на вопрос - где находится изучаемый объект и каковы его геометрические характеристики : размер, форма. Для этого выполняется трансформирование снимков, их изображение приводится в определенную картографическую проекцию. Это позволяет определять по снимкам положение объектов и их изменение во времени.

Современные компьютерные технологии получения информации по снимкам позволяют решать следующие группы задач:

  • визуализация цифровых снимков;
  • геометрические и яркостные преобразования снимков, включая их коррекцию;
  • конструирование новых производных изображений по первичным снимкам;
  • определение количественных характеристик объектов;
  • компьютерное дешифрирование снимков (классификация).

Для выполнения компьютерного дешифрирования применяют наиболее распространенный подход, основанный на спектральных признаках, в качестве которых служит набор спектральных яркостей, зарегистрированных многозональным снимком. Формальная задача компьютерного дешифрирования снимков сводится к классификации — последовательной «сортировке» всех пикселов цифрового снимка на несколько групп. Для этого предложены алгоритмы классификации двух видов — с обучением и без обучения, или кластеризации (от англ. cluster — скопление, группа). При классификации с обучением пикселы многозонального снимка группируются на основе сравнения их яркостей в каждой спектральной зоне с эталонными значениями. При кластеризации же все пикселы разделяют на группы-кластеры по какому-либо формальному признаку, не прибегая к обучающим данным. Затем кластеры, полученные в результате автоматической группировки пикселов, дешифровщик относит к тем или иным объектам. Достоверность компьютерного дешифрирования формально характеризуется отношением числа правильно классифицируемых пикселов к их общему числу.

Вычислительные алгоритмы, основанные на спектральных признаках отдельных пикселов, обеспечивают надежное решение только самых простых классификационных задач; они рационально включаются в качестве элементов в сложный процесс визуального дешифрирования, которое пока остается основным методом извлечения природной и социально-экономической информации из аэрокосмических снимков.

Применение аэрокосмического зондирования в картографировании и исследованиях Земли

Аэрокосмические снимки применяются во всех направлениях изучения Земли, но интенсивность их использования и результативность применения в разных областях исследований различны. Они чрезвычайно важны в исследованиях литосферы, показывая раздробленность геологического фундамента линейными разломами и кольцевыми структурами и облегчая поиски месторождений полезных ископаемых; в исследованиях атмосферы, где снимки дали основу метеорологических прогнозов; благодаря снимкам из космоса открыта вихревая структура океана, зафиксировано состояние растительного покрова Земли на рубеже веков и его изменения в последние десятилетия. Пока космические снимки значительно меньше применяются при социально-экономических исследованиях. Различаются и типы задач, решаемых по снимкам в разных предметных областях. Так, решение инвентаризационных задач реализуется при изучении природных ресурсов, например при картографировании почв, растительности, поскольку снимки наиболее полно отображают сложную пространственную структуру почвенно-растительного покрова. Оценочные задачи, оперативная оценка состояния экосистем выполняются в рамках исследований биопродуктивности океанов, ледового покрова морей, контроля за пожароопасной ситуацией в лесах. Прогностические задачи, использование снимков для моделирования и прогнозирования наиболее развито в метеорологии, где их анализ является основой прогнозов погоды, в гидрологии — для прогноза талого стока рек, паводков и наводнений. Начинаются исследования по прогнозированию сейсмической активности, землетрясений на основе анализа состояния литосферы и верхней атмосферы.

При работе со снимками используются все виды их обработки, но наиболее широко развито дешифрирование снимков, прежде всего визуальное, которое теперь подкрепляется возможностями компьютерных улучшающих преобразований и классификации изучаемых объектов по снимкам. Большое развитие получило создание по снимкам различных производных изображений на основе спектральных индексов. С выполнением гиперспектральной съемки стали создаваться десятки видов таких индексных изображений. Разработка методов интерферометрической обработки материалов радиолокационной съемк и открыла возможность высокоточных определений смещений земной поверхности. Переход к цифровым методам съемки, развитие цифровой стереоскопической съемки и создание цифровых фотограмметрических систем расширили возможности фотограмметрической обработки космических снимков, используемой главным образом для создания и обновления топографических карт.

Хотя одно из основных достоинств космических снимков заключается в совместном отображении всех компонентов земной оболочки, обеспечивающем комплексность исследований, тем не менее применение снимков в различных областях изучения Земли шло пока разрозненно, так как везде требовалась углубленная разработка собственных методик. Идея комплексных исследований наиболее полно реализована при выполнении в нашей стране программы комплексной картографической инвентаризации природных ресурсов, когда по снимкам создавались серии взаимоувязанных и взаимосогласованных карт. Осознание на рубеже веков экологических проблем, нависших над человечеством, и парадигма изучения Земли как системы вновь активизировали комплексные межотраслевые исследования.

Анализ применения снимков в разных направлениях исследований четко показывает, что при всем многообразии решаемых задач магистральный путь практического использования аэрокосмических снимков лежит через карту, которая имеет самостоятельное значение и, кроме того, служит базовой основой ГИС.

Рекомендуемая литература

1. Книжников Ю.Ф., Кравцова В.И., Тутубалина О.В . Аэрокосмические методы географических исследований - М.:Изд.Центр Академия. 2004. 336 с.

3. Краснопевцев Б.В. Фотограмметрия. - М.:МИИГАиК, 2008. - 160 с.

2. Лабутина И.А. Дешифрирование аэрокосмических снимков. - М.:Аспект Пресс. 2004. -184 с.

4. Смирнов Л.Е. Аэрокосмические методы географических исследований. - СПб.:Изд-во С-Петербургского ун-та, 2005. - 348 с.

5. Рис. Г.У. Основы дистанционного зондирования. -М.: Техносфера, 2006, 336 с.

6. Jensen J.R. Remote sensing of the environment: an Earth resource perspective. — Prentice Hall, 2000. — 544 p.

Атласы аэрокосмических снимков:

8. Дешифрирование многозональных аэрокосмических снимков. Методика и результаты. — М.: Наука; Берлин: Академи-Ферлаг. — Т. 1. — 1982. — 84 с.;

9. Дешифрирование многозональных аэрокосмических снимков. Система «Фрагмент». Методика и результаты. — М.: Наука; Берлин: Академи-Ферлаг. Т. 2. — 1988. — 124 с.

10. Космические методы геоэкологии. — М.: Изд-во Моск. ун-та, 1998. — 104 с.

сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин «дистанционное зондирование» обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований. См. также СПУТНИК СВЯЗИ; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ.

Бурша М. Основы космической геодезии . М., 1971–1975
Дистанционное зондирование в метеорологии, океанологии и гидрологии . М., 1984
Зейболд Е., Бергер В. Дно океана . М., 1984
Мишев Д. Дистанционные исследования Земли из космоса . М., 1985

Найти "ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ " на